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I N S T I T U T F Ü R I N F O R M A T I K

HyPer: HYbrid OLTP&OLAP High PERformance
Database System

Alfons Kemper, Thomas Neumann

�����
���	

����

TUM-I1010
Mai 10

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N
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Abstract

The two areas of online transaction processing (OLTP) and online analytical pro-
cessing (OLAP) present different challenges for database architectures. Currently,
customers with high rates of mission-critical transactions have split their data into
two separate systems, one database for OLTP and one so-called data warehouse for
OLAP. While allowing for decent transaction rates, this separation has many disad-
vantages including data freshness issues due to the delay caused by only periodically
initiating the Extract Transform Load-data staging and excessive resource consump-
tion due to maintaining two separate information systems. We present an efficient
hybrid system, called HyPer, that can handle both OLTP and OLAP simultaneously
by using hardware-assisted replication mechanisms to maintain consistent snapshots
of the transactional data. HyPer is a main-memory database system that guaran-
tees the ACID properties of OLTP transactions and executes OLAP query sessions
(multiple queries) on the same, arbitrarily current and consistent snapshot. The uti-
lization of the processor-inherent support for virtual memory management (address
transalation, caching, copy on update) yields both at the same time: unprecedented
high transaction rates as high as several 100000 per second and ultra-low OLAP
query response times of as low as 10 ms – all on a commodity desktop server. Even
the creation of a fresh, transaction-consistent snapshot can be achieved in 10 ms.

1 Introduction

Historically, database systems were mainly used for online transaction processing. Typical
examples of such transaction processing systems are sales order entry or banking transac-
tion processing. These transactions access and process only small portions of the entire
data and, therefore, can be executed quite fast. According to the standardized TPC-C
benchmark results the currently highest-scaled systems can process more than 100.000
such sales transactions per second.

∗Patent pending – applied for by Technische Universität München / Bayerische Patentallianz.

1



ETL Extract Transform Load
O

L
T

P
 R

e
q

u
e

s
ts

 /
T

x

O
L

A
P

 Q
u

e
ri

e
s

Figure 1: State of the Art: Separate OLTP-DB and OLAP-DW

About two decades ago a new usage of database systems evolved: Business Intelligence
(BI). The BI-applications rely on long running so-called Online Analytical Processing
(OLAP) queries that process substantial portions of the data in order to generate reports
for business analysts. Typical reports include the aggregated sales statistics grouped by
geographical regions, or by product categories, or by customer classifications, etc. Initial
attempts – such as SAP’s EIS project – to execute these queries on the operational OLTP
database were dismissed as the OLAP query processing led to resource contentions and
severely hurt the mission-critical transaction processing. Therefore, the data staging ar-
chitecture exemplified in Figure 1 was devised. Here, the transaction processing is carried
out on a dedicated OLTP database system. In addition, a separate Data Warehouse sys-
tem is installed for the business intelligence query processing. Periodically, e.g., during
the night, the OLTP database changes are extracted, transformed to the layout of the
data warehouse schema, and loaded into the data warehouse. This data staging and its
associated ETL process exhibits several inherent drawbacks:

stale data As the ETL process can only be executed periodically, the data warehouse
state does not reflect the latest business transactions. Therefore, business analysts
have to base their decisions on stale (outdated) data.

redundancy Obviously, the usage of two systems incurs the cost of maintaining two
redundant copies of the data. On the positive side, the redundancy allows to model
the data in an application specific way: in normalized tables for OLTP-processing
and as a star-schema for OLAP queries.

high investments Maintaining two separate systems incurs an economical penalty as
investments for two systems (hardware, software, etc) and maintenance costs for
two systems and the complex ETL process have to be taken into account.

Recently, strong arguments for so-called real time business intelligence were made.
Hasso Plattner, the co-founder of SAP, advocates the “data at your fingertips”-goal for
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Figure 2: Main Memory OLTP Database Architecture

enterprise resource planning systems [25]. To achieve this goal several architectural changes
of current database architectures have to be undertaken. First, the separation of OLTP
database and OLAP data warehouse system has to be abandoned. The integration of these
two very different workloads on the same system necessitates further drastic performance
improvements which can be achieved by main-memory database architectures.

On first view, the dramatic explosion of the (Internet accessible) data volume may
contradict this premise of keeping all transactional data main memory resident. However,
a closer examination shows that the business critical transactional database volume has
limited size, which favors main memory data management. To corroborate this assump-
tion let us analyze one of the largest commercial enterprises, Amazon. We sketch the
order processing data volume of this largest online market place which has a yearly rev-
enue of about 15 billion Euros. Assuming that an individual order line values at about
15 Euros and each order line incurs stored data of about 54 bytes – as specified for the
TPC-C-benchmark –, we derive a total data volume of 54 GB per year for the order
lines which is the dominating repository in such a sales application. This estimate nei-
ther includes the other data (customer and product data) which increases the volume nor
the possibility to compress the data to decrease the volume. Nevertheless it is safe to
assume that the yearly sales data can be fit into main memory of a large scale server.
This was also analyzed by Ousterhout et. al. [24] who proclaim the so-called RAM-
cloud as a main-memory storage device for the largest Internet software applications.
Furthermore, extrapolating the past developments it is safe to forecast that the main
memory capacity of commodity as well as high-end servers is growing faster than the
largest business customer’s requirements. For example, Intel announced a large multi-
core processor with a TB of main memory as part of its so-called Tera Scale initiative
(http://techresearch.intel.com/articles/Tera-Scale/1826.htm). The transaction
rate of such a large scale enterprise with 15 billion Euro revenue can be estimated at about
32 order lines per second. Even though the arrival rate of such business transactions is
highly skewed (e.g., Christmas sales peaks) it is fair to assume that the peak load will be
below a few thousand order lines per second.

For our HyPer system we adopt a main-memory architecture for transaction processing
as laid out in Figure 2. We follow the single-threading approach first advocated in [15]
whereby all OLTP transactions are executed sequentially.1. This architecture obviates the

1The single threading execution is relaxed to allow a single-threaded execution per partition in Sec-
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need for costly locking and latching of data objects or index structures as the only one
update transaction “owns” the entire database – or the private partition of the database.
Obviously, this serial execution approach is only viable for a pure main memory database
where there is no need to mask IO operations on behalf of one transaction by interleavingly
utilizing the CPUs for other transactions. In a main-memory architecture a typical busi-
ness transaction (e.g., an order entry or a payment processing) has a duration of only a
few up to ten microseconds. Such a system’s viability for OLTP processing was previously
proven in a research prototype named H-store [17] conducted by researchers led by Mike
Stonebraker at MIT, Yale and Brown University. The H-Store prototype was recently
commercialized by a start-up company named VoltDB.

However, the H-store architecture is limited to OLTP transaction processing only. If
we simply allowed complex OLAP-style queries to be injected into the workload queue
they would clog the system, as all subsequent OLTP transactions have to wait for the
completion of such a long running query. Even if such OLAP queries finish within, say, 30
ms they lock the system for a duration in which around 1000 or more OLTP transactions
could have completed.

Nevertheless, our goal was to architect a main-memory database system that

• processes OLTP transactions at rates of tens of thousands per second, and, at the
same time,

• process OLAP queries on up-to-date snapshots of the transactional data

This challenge is sketched in Figure 3. We architected such an efficient hybrid system,
called HyPer, that can handle both OLTP and OLAP simultaneously by using hardware-
assisted replication mechanisms to maintain consistent snapshots of the transactional data.
HyPer is a main-memory database system that guarantees the ACID properties of OLTP
transactions. In particular, we devised logging and backup archiving schemes for durability
and fast recovery. In parallel to the OLTP processing, HyPer executes OLAP query
sessions (multiple queries) on the same, arbitrarily current and consistent snapshot. The
utilization of the processor-inherent support for virtual memory management (address
translation, caching, copy on update) accomplishes both in the same system and at the
same time: unprecedented high transaction rates as high as several 100000 per second
and ultra-low OLAP query response times of as low as 10 to 30 ms – all on a commodity
desktop server for less than 4000 Euro. Even the creation of a fresh, transaction-consistent
snapshot can be achieved in 10 ms.

2 Related Work/Systems

• HyPer is a new RISC-style database systems like RDF-3X [22] (albeit for a very
different purpose). Both systems are developed from scratch. Thereby, historically
motivated ballast of traditional database systems is omitted and new hardware and
OS-functionality can be leveraged.

• HyPer’s partitioning technique is particularly beneficial for multi-tenancy database
applications [1, 2].

tion 3.4
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Figure 3: Hybrid OLTP&OLAP Database Architecture

• SolidDB of Solid Information Technology is a main memory DB developed in Helsinki.
In the mean time IBM took over this company. Within this project the tuple level
[21] snapshots were proposed that are kept consistent by tuple shadowing instead of
page shadowing. The authors report 30 % transactional throughput increase and a
smaller main memory footprint.

• Shadow Paging [3]

– Shadow paging has been around in the database literature [14] for decades –
starting in the Eighties.

– For disk based database systems shadowing was not really successful due to its
destoying the page clustering. This hurts the scan performance, e.g., for a full
table scan, as the disk’s read/write head has to be moved.

– HyPer is based on a virtual memory supported shadow paging where scan per-
formance is not hurt by the shadowing. In main memory there is no difference
between accessing two consecutive physical memory pages versus accessing two
physical pages that are further apart. Furthermore, the snapshots based on VM
shadowing do not affect the logical page layout, i.e., potentially non-sequential
physical page accesses are hidden by the hardware.

• The authors of H-Store [17, 15] deserve the credit for analyzing the overhead imposed
by various traditional database management features (buffer management, logging,
locking, etc.) and proving the feasibility of a main memory database systems that
processes transactions sequentially without synchronization overhead.

• VoltDB [26, 16]: The commercialization of H-Store was first presented at the HPTS
workshop end of 2009.

• TimesTen[23]: This is Oracle’s main memory database system for OLTP processing.
It is typically used as a “front” cache for the Oracle mainstream database system.

• MonetDB: This is the most influential database research project on column store
storage schemes for in memory data. An overview of the system can be found in
the summary paper [7] resented on the occasion of receiving the 10 year test of time
award of the VLDB conference.
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• SAP’s Main Memory Databases

– OLTP: P*TIME / Transact in Memory [10]

∗ founded by Sang Kyun Cha, now a professor at Seoul University

∗ acquired by SAP in 2005

– OLAP: TREX [6]

∗ This is SAP’s most prominent database project

∗ underlying SAP’s business intelligence functionality

∗ According to Hasso Plattners key note at SIGMOD 2009 [25] SAP intends
to extend it to include OLTP functionality and then make it the basis for
hosted applications, e.g., Business by Design

∗ The hybrid system is apparently a combination of TREX and P*TIME

• HP Neoview: Neoview is HP’s parallel database system, that is augmented for real
time business intelligence. [20] reports on our joint project on managing mixed
OLTP&OLAP workloads in Neoview.

• RAMcloud [24] is a research and development project at Stanford University which
receives a lot of (academic and industrial) attention. Their goal is to develop a large
scale cluster of machines with cooperative main memory storage that can service any
object access within 10 microseconds.

3 System Architecture

The HyPer architecture was devised such that OLTP transactions and OLAP queries can
be performed on the same main memory resident database. In contrast to old-style disk-
based storage servers we omitted any database-specific buffer management and page struc-
turing. The data resides in quite simple, main-memory optimized data structures within
the virtual memory. Thus, we can exploit the OS/CPU-implemented address translation
at “full speed” without any additional indirection. We currently experiment with the two
predominant relational database storage schemes: In the row store approach we maintain
relations as arrays of entire records and in the column store approach the relations are
vertically partitioned into vectors of attribute values. Currently, the HyPer prototype is
globally configured to operate as a column or a row store – but in future work the table
layout will be adjustable according to the access patterns.

Even though the virtual memory can (significantly) outgrow the physical main memory
we limit the database to the size of the physical main memory in order to avoid OS-
controlled swapping of virtual memory pages.

3.1 OLTP Processing

Since all data is main-memory resident there will never be a halt to await IO. Therefore,
we can rely on a single-threading approach first advocated in [15] whereby all OLTP
transactions are executed sequentially. This architecture obviates the need for costly
locking and latching of data objects as the only one update transaction “owns” the entire
database. Obviously, this serial execution approach is only viable for a pure main memory
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Figure 4: Forking a new Snapshot

database where there is no need to mask IO operations on behalf of one transaction by
interleavingly utilizing the CPUs for other transactions. In a main-memory architecture a
typical business transaction (e.g., an order entry or a payment processing) has a duration
of only around ten microseconds. This translates to throughputs in the order of tens of
thousands per second, much more than even large scale business applications require – as
we analyzed in the Introduction.

The serial execution of OLTP transactions is exemplified in Figure 4 by the queue on the
left-hand side in which the transactions are serialized to await execution. The transactions
are implemented as stored procedures in a high-level scripting language. This language
provides the functionality to look-up database entries by search key, iterate through sets of
objects, insert, update and delete data records, etc. The high-level scripting code is then
compiled by the HyPer system into low-level code that directly manipulates the in-memory
data structures.

Obviously, the OLTP transactions have to guarantee short response times in order to
avoid long waiting times for subsequent transactions in the queue. This prohibits any kind
of interactive transactions, e.g., requesting user input or synchronously invoking a credit
card check of an external agency. This, however, does not constitute a real limitation as our
experience with high-performance business applications, such as SAP R/3 [19, 12] reveals
that these kinds of interactions occur outside the database context in the application
servers, anyway.

3.2 OLAP Snapshot Management

If we simply allowed complex OLAP-style queries to be injected into the OLTP workload
queue they would clog the system, as all subsequent OLTP transactions have to wait for the
completion of such a long running query. Even if such OLAP queries finish within, say, 30
ms they lock the system for a duration in which possibly thousands of OLTP transactions
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Figure 5: Copy on Update to Preserve Consistent Snapshot

could have completed. To achieve our goal to architect a main-memory database system
that

• processes OLTP transactions at rates of tens of thousands per second, and, at the
same time,

• processes OLAP queries on up-to-date snapshots of the transactional data

we exploit the operating systems functionality to create virtual memory snapshots for new,
duplicated processes. In Unix, for example, this is done by creating a child process of the
OLTP process via the fork() system call. To guarantee transactional consistency, the
fork() should only be executed in between two (serial) transactions, never in the middle
of one transaction. In section 4.6 we will relax this constraint by utilizing the undo log
to convert an action consistent snapshot (created in the middle of a transaction) into a
transaction consistent one.

The forked child process obtains an exact copy of the parent processes address space, as
exemplified in Figure 4 by the overlayed page frame panel. This virtual memory snapshot
that is created by the fork()-operation will be used for executing a session of OLAP queries
– as indicated in Figure 6.

The snapshot stays in precisely the state that existed at the time the fork() took
place. Fortunately, state-of-the-art operating systems do not physically copy the memory
segments right away. Rather, they employ a lazy copy-on-update strategy – as sketched
in Figure 6. Initially, parent process (OLTP) and child process (OLAP) share the same
physical memory segments by translating either virtual addresses (e.g., to object a) to the
same physical main memory location. The sharing of the memory segments is highlighted
in the graphics by the dotted frames. A dotted frame represents a virtual memory page
that was not (yet) replicated. Only when an object, like data item a, is updated, the OS-
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and hardware-supported copy-on-update mechanism initiate the replication of the virtual
memory page on which a resides. Thereafter, there is a new state denoted a

′ accessible
by the OLTP-process that executes the transactions and the old state denoted a, that is
accessible by the OLAP query session. Unlike the figure suggests, the additional page is
really created for the OLTP process that initiated the page change and the OLAP snapshot
refers to the old page – this detail is important for estimating the space consumption if
several such snapshots are created (cf. Figure 8).

Another intuitive way to view the functionality is as follows: The OLTP process oper-
ates on the entire database, part of which is shared with the OLAP module. All OLTP
changes are applied to a separate copy (area), the Delta – consisting of copied (shad-
owed) main database pages. Every “now and then” the Delta is merged with the OLAP
database by fork-ing a new process for an up-to-date OLAP session. Thereby, the Delta
is conceptually re-integrated into the main database. This view is illustrated in Figure 7.
Unlike any software solution for merging the two parts, main and Delta, our hardware-
supported virtual memory merge (fork) can be achieved very efficiently in about 10 ms
(almost independent of the size of the two parts).

The replication (into the Delta) is carried out at the granularity of entire pages, which
usually have a default size of 4 KB. In our example, the state change of a to a

′ induces not
only the replication of a but also of all other data items on this page, such as b, even though
they have not changed. This is the price we opt to pay in exchange for relying on the very
effective and fast virtual memory management by the OS and the processor, such as ultra-
efficient VM address transformation via TLB caching and copy-on-write enforcement. Also
it should be noted that the replicated pages only persist until the OLAP session terminates
– usually within seconds or minutes. Traditional shadowing concepts in database systems
are based on pure software mechanisms that maintain shadow copies at the page level [3]
or shadow individual objects as proposed in [21].

Our snapshots incur storage overhead proportional to the number of updated pages
by the parent (i.e., the OLTP request executing) process. It replicates the delta (corre-
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Figure 7: HyPer-Snapshot Creation Viewed as a Delta Merge

sponding to the changed pages) between the memory state of the OLTP process at the
time when the fork() created the snapshot and the current memory state of the OLTP
process. The OLAP processes (almost) never change the shared pages – which would
of course be unproblematic because of the copy-on-update mechanism. However, to in-
crease performance they should allocate their temporary data structures in non-shared
main memory areas. If the main memory capacity is scarce, the OLAP query engine can
employ secondary storage devices (e.g. disks), thereby trading main memory capacity for
longer execution time. Sorting a relation by creating disk-based runs is one prominent
example. All OLAP queries, denoted by the ovals, in the OLAP Queries queue access the
same consistent snapshot state of the database. We call such a group of queries a query
session to denote that a business analyst could use such a session for a detailed analysis
of the data by iteratively querying the same state to, e.g., drill down to more details or
roll up for a better overview.

3.3 Multiple OLAP Sessions

So far we have sketched a database architecture utilizing two processes, one for OLTP and
another one for OLAP. As the OLAP queries are read-only they could easily be executed
in parallel in multiple threads that share the same address space. Still, we can avoid any
synchronization (locking and latching) overhead as the OLAP queries do not share any
mutable data structures. Modern multi-core computers which typically have more than
ten cores can certainly yield a substantial speed up via this inter-query parallelization.

Another possibility to make good use of the multi-core servers is to create multiple
snapshots. The HyPer architecture allows for arbitrarily current snapshots. This can
simply be achieved by periodically (or on demand) fork-ing a new snapshot and thus
starting a new OLAP query session process. This is exemplified in Figure 8. Here we
sketch the one and only OLTP processes current database state (the front panel) and three
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Figure 8: Multiple OLAP Sessions at Different Points in Time

active query session processes’ snapshots. The oldest being the one in the background. The
successive state changes are highlighted by the four different states of data item a (the
oldest state), a

′, a
′′, and a

′′′ (the youngest transaction consistent state). Obviously, most
data items do not change in between different snapshots as we expect to create snapshots
for most up-to-date querying at intervals of a few seconds – rather than minutes or hours
as is the case in current separated data warehouse solutions with ETL data staging. The
number of active snapshots is, in principle, not limited, as each “lives” in its own process.
By adjusting the priority we can make sure that the mission critical OLTP process is always
allocated a core – even if the OLAP processes are numerous and/or utilize multi-threading
and thus exceed the number of cores.

A snapshot will be deleted after the last query of a session is finished. This is done by
simply terminating the process that was executing the query session. It is not necessary to
delete snapshots in the same order as they were created. Some snapshots may persist for
a longer duration, e.g., for detailed stocktaking purposes. However, the memory overhead
of a snapshot is proportional to the number of transactions being executed from creation
of this snapshot to the time of the next younger snapshot (if it exists or to the actual
time). The figure exemplifies this on the data item c which is physically replicated for the
“middle age” snapshot and thus shared and accessible by the oldest snapshot. Somewhat
against our intuition, it is still possible to terminate the middle-aged snapshot before
the oldest snapshot as the page on which c resides will be automatically detected by the
OS/processor as being shared with the oldest snapshot via a reference counter associated
with the physical page. Thus it survives the termination of the middle-aged snapshot –
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unlike the page on which a
′ resides which is freed upon termination of the middle-aged

snapshot process. The youngest snapshot accesses the state c
′ that is contained in the

current OLTP processes address space.

3.4 Multi-Threaded OLTP Processing

We already outlined that the OLAP process may be configured as multiple threads to
better utilize the multiple cores of modern computers. This also possible for the OLTP
process, as we will describe here.

There are many application scenarios where it is natural to partition the data. One very
important application class for this is multi-tenancy – as described in [1, 2]. The different
database users (called tenants) work on the same or similar database schemas but do not
share their transactional data. Rather, they maintain their private partitions of the data.
Only some read-mostly data (e.g., product catalogs, geographical information, business
information catalogs like Dun & Bradstreet) is shared among the different tenants.

Interestingly, the TPC-C benchmark exhibits a similar partitioning as most of the data
can be partitioned horizontally by the Warehouse, to which it belongs. The only exception
is the Items table, which corresponds to our read-mostly, shared data partition.

In such a partitioned application scenario HyPer’s OLTP process can be configured as
multiple threads – to increase performance even further via parallelism. This is sketched
in Figure 9. As long as the transactions access and update only their private partition
and access (not update) the shared data we can run multiple such transactions in parallel
– one per partition. The figure sketches this as each oval (representing a transaction)
inside the panel corresponds to one such partition-constrained transaction executed by a
separate thread. However, transactions reading across partitions or updating the shared
data partition require exclusive access to the system – just as in our initial purely sequential
approach. This way updating the shared data is quite expensive – however, since it is
read-mostly updates are rare events on this data. The synchronization aspects are further
detailed in Section 4.3.

The OLAP snapshots can be forked as before – except that we have to quiesce all
threads before this can be done in a transaction consistent manner. Again, we refer to
Section 4.6 for a relaxation of this requirement by transforming action consistent snapshots
into transaction consistent ones via the undo log. The OLAP queries can be formulated
across all partitions and the shared data, which is even needed in multi-tenancy applica-
tions for administrative purposes.

The partitioning of the database can be further exploited for a distributed system
that allocates the private partitions to different nodes in a compute cluster. The read-
mostly, shared partition can be replicated across all nodes. Then, partition-constrained
transactions can be transferred to the corresponding node and run in parallel without any
synchronization overhead. Synchronization is needed for partition-crossing transactions
and for the synchronized snapshot creation across all nodes.

4 Transaction Semantics and Recovery

Our OLTP/OLAP transaction model corresponds most closely to the multiversion mixed
synchronization method, as described by Bernstein, Hadzilacos and Goodman [5] (Section
5.5.). In this model updaters (in our terminology OLTP transactions) are fully serializable
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Figure 9: Multi-Threaded OLTP Processing on Partitioned Data

and read-only queries (our OLAP queries) access the database in a “frozen” transaction
consistent state that existed at a point in time before the query was started.

Recently, such relaxed synchronization methods have regained attention as full serial-
izability was, in the past, considered too costly for scalable systems. HyPer achieves both:
utmost scalability and full serializability. A variation of the multiversion synchronization is
called snapshot isolation and was first described in [4]. It currently gains renewed interest
in the database research community – see, e.g., [8]. Herein, the snapshot synchronization
is not constrained to read-only queries but also to the read requests in update transac-
tions. Snapshot isolation is, for example employed in Sleepy Cat (an open source DBMS
acquired by Oracle). Also Oracle’s flagship commercial database systems employs a vari-
ant of snapshot isolation. Oracle’s commercial success can partly be attributed to this
relaxed concurrency control scheme resembling snapshot isolation because of its superior
performance in comparison to strict two-phase locking schemes.

4.1 Snapshot Isolation of OLAP Query Sessions

In snapshot isolation a transaction continuously sees the transaction consistent database
state as it existed at a point in time (just) before the transaction started. There are
different possibilities to implement such a snapshot – while database modifications are
running in parallel:

• Roll-Back: This method, as used in Oracle, updates the database objects in place.
If an older query requires an older version of a data item it is created by undoing all
updates on this object. Thus, an older copy of the object is created in a so-called
roll-back segment by reversely applying all undo log records up to the required point
in time.

• Versioning: All object updates create a new timestamped version of the object. Thus,
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a read on behalf of a query retrieves the youngest version (largest timestamp) whose
timestamp is smaller than the starting time of the query. The versioned objects are
either maintained durably (which allows time travelling queries) or temporarily until
no more active query needs to access them.

• Shadowing [3]: Originally shadowing was invented to obviate the need for undo
logging as all changes were written to shadows first and then installed in the database
at transaction commit time. However, the shadowing concept can also be applied to
maintaining snapshots.

• Virtual Memory Snapshots: Our snapshot mechanism explicitly creates a snap-
shot for a series of queries, called a query session. In this respect, all queries of
a Query Session are bundled to one transaction that can rely on the transaction
consistent state preserved via the fork()-process.

4.2 Transaction Consistent Archiving

We can also exploit the VM snapshots for creating backup archives of the entire database
on non-volatile storage. This process is sketched in Figure 10. Typically, the archive is
written via a high-bandwidth network of 1 to 10 Gb/s to a dedicated storage server within
the same compute center. To maintain this transfer speed the storage server has to employ
several (around 10) disks for a corresponding aggregated bandwidth.

4.3 OLTP Transaction Synchronization

In the single-threaded mode the OLTP transactions do not need any synchronization
mechanisms as they own the entire database.

In the multi-threaded mode (cf. Section 3.4) we distinguish two types of transactions:

• partition-constrained transactions can read and update the data in their own
partition as well as read the data in the shared partition. However, the updates are
limited to their own partition.

• partition crossing transactions are those that, in addition, update the shared
data or access (read or update) data in another partition.

Transactions of the latter class of partition crossing transactions should be very rare
as updates to shared data seldom occur and the partitioning is derived such that transac-
tions usually operates only on their own data. The classification of the stored procedure
transactions in the OLTP workload is done automatically based on analyzing their imple-
mentation code.

The HyPer system admits at most one partition constrained transactions per partition
in parallel. Therefore, there is no need for any kind of locking or latching as the partitions
have non-overlapping data structures and the shared data is accesses read-only.

A partition crossing transactions, however, has to be admitted in exclusive mode. In
essence, it has to preclaim an exclusive lock (or, in POSIX terminology, it has to pass
a barrier before being admitted) on the entire database before it is admitted. Thus,
the execution of partition crossing transactions is relatively costly as they have to wait
until all other transactions are terminated and for their duration no other transactions

14



OLTP Requests /Tx

Virtual   Memory

B
a
cku

p
P

ro
ce

ss

O
LAP

Session

O
LAP

S

a’
c

a’’’

b

d

c’
a’’

b

a’

b

a

b

d

c

Figure 10: Consistent Snapshot Backup Archive

15



are admitted. Once admitted to the system, the transaction runs at full speed as the
exclusive admittance of partition crossing transactions again obviates any kind of locking
or latching synchronisation of the shared data partition or the private data partitions.

4.4 Durability

The durability of transactions requires that all effects of committed transactions have to
be restored after a failure. To achieve this we employ classical redo logging in HyPer. This
is highlighted by the gray ovals emanating from the serial transaction stream leading to
the non-volatile Redo-Log storage device in Figure 11. We employ logical redo logging
[13] by logging the parameters of the stored procedures that represent the transactions. In
traditional database systems logical logging is problematic because after a system crash
the database may be in an action-inconsistent state. This cannot happen in HyPer as we
restart from a transaction consistent archive (cf. Figure 10). It is only important to write
these logical log records in the order in which they were executed in order to be able to
correctly recover the database. In the single threaded OLTP configuration this is easily
achieved. For the multi-threaded system only the log records of the partition crossing
transactions have to be totally ordered w.r.t. to all transactions while the partition con-
strained transactions’ log records may be written in parallel and thus only sequentialized
per partition.

High Availability and OLAP Load Balancing via Secondary Server

The redo log stream can also be utilized to maintain a secondary server. This secondary
HyPer server merely excutes the same transactions as the primary server. In case of a
primary server failure the transaction processing can be switched over to the secondary
server. However, we do not propose to abandon the writing of redo log records to stable
storage and to only rely on the secondary server for fault tolerance. A software error may
– in the worst case – lead to a “synchronous” crash of primary and secondary servers.

The secondary server is typically less loaded as it needs not execute any read-only
OLTP transactions and, therefore, has less OLTP load than the primary server. This can
be exploited by delegating some (or all) of the OLAP querying sessions to the secondary
server. Instead of – or in addition to – forking an OLAP session’s process on the primary
server we could just as well use the secondary server.

The usage of a secondary server that acts as a stand-by for OLTP processing and as an
active OLAP processor is illustrated in Figure 12. Not shown in the figure is the possibility
to use the secondary server instead of the primary server for writing a consistent snapshot
to a storage server’s archive. Thereby, the backup process is delegated from the primary
to the less-loaded secondary server.

Optimization of the Logging

The write ahead logging (WAL) principle may turn out to become a performance bottle-
neck as it requires to flush log records before committing a transaction. This is particularly
costly in a single-threaded execution as the transaction – and all succeeding ones – have
to wait.

Two commonly employed strategies that were already described by DeWitt et. al. [11]
and in the textbook by Härder and Rahm [14] are possible
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• Group commit or

• Asynchronous commit.

Group commit is, for example, configurable in DB2. A final commit of a transaction is not
executed right after the end of a transaction. Rather, log records of several transactions
are accumulated and flushed in a batched mode. Thus, the acknowledgement of a commit
is delayed. While waiting for the batch of transactions to complete and their log records
being flushed all their locks are already freed. This is called early log release (ELR) and
does not jeopardize the serializability correctness. In our non-locking system this translates
to admitting the next transaction(s) for the corresponding partition. Once the log buffer
is flushed for the group of transactions, their commit is acknowledged to the client.

Another, less safe, method can be used in Oracle and PostgreSQL. It relaxes the WAL
principle by avoiding to wait for the flushing of the log records. As soon as the log
records are written into the volatile log buffer the transaction is committed. This is called
asynchronous commit. In the case of a failure some of these log records may be lost and
thus the recovery process will miss those committed transactions during restart.

4.5 Atomicity

The atomicity of transactions requires to be able to eliminate any effects of a failed
transaction from the database. We only have to consider explicitly aborted transactions,
called the R1-recovery [18]. The so-called R3-recovery that demands that updates of loser-
transactions (those that were active at the time of the crash) are undone in the restored
database is not needed in HyPer, as the database is in volatile memory only and the logical
redo logs are written only at the time when the successful commit of the transaction is
guaranteed. Furthermore, the archive copy of the database that serves as the starting point
for the recovery is transaction consistent and, therefore, does not contain any operations
that need to be undone during recovery (cf. Figure 10). As a consequence, undo logging is
only needed for the active transaction (in multi-threaded mode for all active transactions)
and can be maintained in volatile memory only. This is highlighted in Figure 11 by the
ring buffer in the top left side of the page frame panel. During transaction processing the
before images of any updated data objects are logged into this buffer. The size of the ring
buffer is quite small as it is bounded by the number of updates per transaction (times the
number of active transactions in multi-threaded operation).

4.6 Cleaning Action Consistent Snapshots

The undo-logging can also be used to create a transaction consistent snapshot out of an
action-consistent VM snapshot that was created while some transactions were still active.
This is particularly beneficial in a multi-threaded OLTP system as it avoids completely
quiescing the transaction processing. After forking the OLAP process including its asso-
ciated VM snapshot the undo log records are applied to the snapshot state – in reverse
chronological order. As the undo log buffer reflects all effects of active transactions (at
the time of the fork) – and only those – the resulting snapshot is transaction-consistent
and reflects the state of the database before initiation of the transactions that were still
active at the time of the fork – including all transactions that were completed up to this
point in time.
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This transformation of an action consistent snapshot into a transaction consistent one
is applied to create an OLAP session’s snapshot as well as for preparing a snapshot for
archiving the database (cf. Figure 10).

4.7 Recovery after a System Failure

During recovery we can start out with the youngest fully written archive, which is restored
in main memory. Then the Redo Log is applied in chronological order – starting with the
first redo log entry after the fork for the snapshot of the archive. As the archive can be
restored at a bandwidth of up to 10 Gb/s (limited by the network’s bandwidth from the
storage server) and the redo log can be applied at transaction rates of 100,000 per second
the fail-over time for a typical large enterprise (e.g., 100 GB database and thousands of tps)
is in the order of one to a few minutes only – if backup archives are written on an hourly
basis. If this fail-over time cannot be tolerated it is also possible to rely on replicated
HyPer-servers, one in active mode and the other one performing the same transactions,
e.g., via redo log “sniffing” – as sketched in Figure 12. In the case of a failure a simple
switch-over restores the system.

The recovery process is sketched in Figure 13.

5 Evaluation

We base our performance evaluation of the HyPer prototype on the standardized TPC-C
benchmark. This benchmark “simulates” a sales order processing (order entry, payment,
delivery) system of a merchandising company. The benchmark constitutes the core func-
tionality of such a commercial merchandiser like Amazon or Würth or Otto Versand.

5.1 The TPC-C-Benchmark

The TPC-C benchmark is a standardized benchmark for OLTP applications. The bench-
mark specification and the supervision of the benchmark execution is managed by the
Transaction Processing Council organization (www.tpc.org).

The database schema of the TPC-C benchmark is shown in Figure 14 as an Entity-
Relationship-Diagram with cardinality indications of the entities and the (min,max)-notation
to specify the cardinalities of the relationships. The schema consists of 9 relations:

• Warehouse: There are W ≥ 1 warehouses, each represented by a separate tuple. Our
experiments were carried out on a database with 5 warehouses.

• District : There are 10 districts per warehouse, whose customers are primarily served
by the corresponding warehouse.

• Customer : Per district there are 3000 customers, i.e., 30000 per Warehouse and
W ∗ 30000 in total.

• Order : In the initial state every customer has already submitted one order. The
number of orders is obviously increasing during the benchmark run and pending
orders are continuously processed by the Delivery transaction.
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• New-Order : A newly arriving order is not only inserted into the Order, but also into
the New-Order relation. More precisely, a foreign key is inserted here and deleted
after the order has been delivered.

• Order-Line: Every order has between 5 and 15 (average 10) order lines specifying
the ordered items (products). Thus, the initial 5 Warehouse-database has 1.5 mio
order lines preloaded.

• Stock : In this relation the stocked items of the different warehouses are modelled.
Thus, per (Warehouse,Item)-tuple there is one entry in the relation Stock – i.e.,
W ∗ 100k tuples in total. An order line is checked against the stock level of a
warehouse, modelled by the relationship available.

• Item: This relation contains one tuple for each of the 100000 products that can be
ordered. The relation Item is immutable, that is, it is never updated during the
benchmark runs. Furthermore, it remains invariant at 100000 entries against scaling
the database by increasing the number of warehouses.

• History : This relation contains aggregated information about the order history of
each customer.

Item (100k)

of

Stock (W ∗ 100k)

stored

Warehouse (W)

available

Order-Line (W ∗ 300k)

New-Order (W ∗ 9k)

History (W ∗ 30k)

serves

pending

contains

has

Order (W ∗ 30k)

issues

Customer (W ∗ 30k)

located-in

District (W ∗ 10)
(1, 1)(10, 10)

(W, W )

(1, 1)

(1, 1)

(100k, 100k)

(1, 1)

(3, 3)

(1, 1)

(1, 1) (5, 15)

(1, 1)

(1, 1)

(1, ∗)

(1, 1)

(3k, 3k)

(1, 1)

(0, 1)

Figure 14: Entity-Relationship-Diagram of the TPC-C Database

The TPC-C-benchmark consists of five transactions that simulate the order processing
in a typical merchandising company:
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1. New-Order : In this transaction a new incoming order is processed, that consists of 5
to 15 order lines. The availability of each order line is checked in the Stock relation.
For 1% of the New-Orders the last order line is invalid as it contains a non-existing
Item number. In this case the entire order processing has to be undone – using the
undo recovery scheme.

2. Payment : In this transaction the payment of a customer is processed. The paying
customer is either identified by primary key or by name, in which case one of the
several customers has to be selected. In addition to updating the customer entry,
also aggregated statistics for the corresponding Warehouse and District are updated.

3. Order-Status: This is a read-only transaction (query), in which the last order of
a particular customer is retrieved. Even though it is a query, we process it as an
OLTP transaction to ascertain that the most current transaction consistent state is
exposed.

4. Delivery : In this (most complex) transaction 10 pending orders of the New-Order
relation are selected and processed. The corresponding orders are deleted from the
New-Order relation.

5. Stock-Level : This read-only transaction controls the availability of the most recently
ordered items. Again, we process it as an OLTP transaction.

The transaction mix of the benchmark is such that the three update transactions (New-
Order, Payment, and Delivery) reflect typical business procedures. The system maintains
a balanced database state, that is, every order is eventually paid and delivered. As the
Delivery transaction processes ten orders in a batch it is scheduled only 1/10-th as frequent
as the other two.

The performance of a system is specified in number of New-Order transactions that
are processed – while, of course, all the other transactions have to be processed within
certain time limits as well.

The benchmark reports two performance criteria:

• tpmC : The throughput of New-Order -transactions per minute. We will report trans-
actions per second (TPS) instead.

• Price/Performance: For this performance parameter the total systems price (hard-
ware, software, and software maintenance for five years) is related to the performance
(i.e., tpmC). This performance parameter specifies the cost of one transaction per
minute in $.

Obviously, there is a trade-off between ultra high performance (for very large scale
companies) and cost effectiveness (for medium sized installations). Currently two of the
best performing systems of either category achieve

• 100000 New-Order transactions per minute (i.e., ca 2000 transactions per second –
tps) at a system price of ca 65000 US Dollar (that is, about 0.7 Dollar per transaction
per minute).
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• 6000000 New-Order transactions per minute (i.e., 100000 tps) at a price of ca. 17
Mio. US Dollar (i.e., around 3 Dollar per transaction per minute in the price/perfor-
mance ratio).

Many more benchmark results can be obtained via www.tpc.org.

5.2 OLAP Query

Since HyPer is designed as a hybrid OLTP&OLAP database system we also devised a set
of OLAP queries to augment the TPC-C benchmark. For our initial measurements we
use just one, albeit comprehensive OLAP query that scans the bulk of the database (the
orders and order lines). In this query for a specified District in a specified Warehouse
the top-10 Customers w.r.t. their generated revenue are determined. The SQL code is
sketched below:

Select o_c_id, sum(ol_amount)

From order join orderline on ol_o_id=o_id

Where o_w_id = $1 and

o_d_id = $2 and

ol_w_id = $1 and

ol_d_id = $2

Group by o_c_id

Order by sum(ol_amount) desc

Limit 10

5.3 Performance of Different HyPer Configurations

All benchmarks were carried out on a TPC-C-setup with 5 Warehouses. Thus, the initial
database contained 150000 Customers with 1.5 million order lines – totalling ca. 500 MB of
net data. The query session was started (fork-ed) at the beginning of the benchmark and
the same top-10 customer query was run successively in parallel to the OLTP transactions
on the snapshot of the initial state of the benchmark. The OLTP throughput was derived
from measuring the running time for 100000 transactions. The query response times were
averaged from 100 executions of the top 10 Customers query which were sequentially
executed in parallel to the “full-speed” OLTP processing.

HyPer can be configured as a row store or as a column store. For OLTP we did not
experience a significant performance difference; however, the OLAP query processing was
significantly sped up by a column-wise storage scheme.

5.3.1 Hardware Configuration

• two Intel E5530 Quad-Core-CPU, 8MB Cache, 2.4 GHz

• 8 GB RAM

• Linux operating system RHEL 5.4

• four 1TB SATA-HD (not used in the benchmark)
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• 1 Gb/s network interconnect (possibly a logging bottleneck and should be scaled up
to 10 Gb/s)

• Price: 3035 Euros (discounted price for universities)

5.3.2 H-Store Setup without Redo-Logging

In this experiment we compare HyPer against the published results of the initial H-Store
paper [15]. Only two transaction types (New-Order and Payment) are run in sequential
mode.

• 181488 tps w/o parallel query session (H-Store reported less than 50000 tps, i.e.,
1/4-th of HyPer’s throughput)

• 149476 tps with parallel query session (H-Store cannot do this)

• 29ms per Query (14ms as a Column Store)

– Traditional DBMS’ like IBM DB2 take about 3 to 5 times longer to execute
such a query – on a warm cache without any additional OLTP load.

With asynchronous redo-logging to Null-Device

• 164203 tps w/o parallel Query Session

• 136798 tps with parallel query session

With asynchronous redo-logging via slow 1 Gb/s network

• 113895 tps w/o parallel query session

• 96993 tps with parallel query session

5.4 Full TPC-C Transaction Suite

Here the full suite of TPC-C transactions was run, i.e., all five transactions types in the
specified workload composition. Again, the OLTP process ran without and with a parallel
query session. The throuphputs are given as tuples (new-order tps / count of all five tps).

Without redo-logging

• 73548/161290 tps w/o Query Session

• 66087/144928 tps with parallel query session

• 26ms per Query (8ms as Column Store)

With asynchronous redo-logging to Null-Device

• 68059/149254 tps w/o parallel Query Session

• 61621/135135 tps with parallel query session
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With asynchronous redo-logging via slow 1 Gb/s network

• 53647/117647 tps w/o parallel query session

• 46530/102041 tps with parallel query session

With five parallel Workers For this benchmark we partitioned the database horizon-
tally by Warehouse – except for the Items table that was modelled as a shared read-mostly
(actually read only) partition. The system configuration resembles the one shown in Fig-
ure 9, except that there are five horizontal partition, one for each Warehouse.

• 179928/351168 w/o Query Sessions

• 170519/335649 with parallel query sessions

• 8ms per Query (5ms as Column Store)

With asynchronous redo-logging via slow 1 Gb/s network

• 158676/309521 w/o Query Sessions

• 139969/272919 with parallel query session

This is faster than the fastest currently published TPC-C result. Even the results with
a parallel query session constitute a “world record” – even though the competitors were
only performing the OLTP transactions, while HyPer was additionally executing the query
session.

These throughput results obtained on a single commodity desktop PC correspond to
the published throughput results of VoltDB [26] on a 6-node cluster. Again, the VoltDB
system cannot support the parallel session of successive OLAP queries.

5.4.1 Fork-ing a New Query Session

Forking a new query session and its corresponding transaction consistent snapshot is sur-
prisingly fast. It took only 8 ms without substantial load and 11 ms with query load
from another (older) query session. Note: the OLTP process is always quiesced during
the fork-operation, so it cannot generate any background load. Being able to fork within
10 ms means that we can afford to create a fresh transaction consistent snapshot every
second by giving up only 1% of the OLTP throughput performance.

6 Summary of the Innovation and Potential Impact

Our HyPer architecture is based on virtual memory supported snapshots on transactional
data for multiple query sessions. The snapshot consistency and the high processing per-
formance in terms of OLTP throughput and OLAP query response times is achieved as
follows:

• Copy on demand (= write) to preserve snapshot consistency

– detection of shared pages that need replication by OS/Processor
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– as current as needed (fork a new session within 10 ms any time in between
OLTP transactions)

– Replication at page granularity

• Abandon old-style buffer management and page management. Instead, rely on fast
operating system/hardware support for VM address translation and snapshot con-
sistency

– page table management

– Memory Management Unit (MMU), Translation Lookaside Buffer (TLB)

– reference counting for shared pages across several snapshots (implicit by virtual
memory management)

• Use multi core architecture effectively

– 1 OLTP process (possibly multi-threaded on partitions)

– Multiple OLAP sessions (one possibly multi-threaded process per session or
separate processes forked from the primary OLAP session’s process)

Potential Impact of the HyPer Techniques

Currently, main-memory database systems are explicitly architected for one of the two ap-
plications scenarios: OLTP or OLAP. Thus, HyPer’s snapshot (Copy-on-Write) technique
for shadowing the pages of the OLTP process and then merging them back into the OLAP
database are beneficial for either class of systems:

• The OLAP-centric systems such as SAP’s TREX and MonetDB could thereby gain
the high-throughput OLTP functionality and

• the OLTP-centric systems, such as Oracles’s TimesTen, SAP’s P*Time, or VoltDB’s
H-Store could be augmented to achieve the high-performance and snapshot-consistent
OLAP query processing functionality.
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column database. In Çetintemel et al. [9], pages 1–2.

[26] VoltDB. Technical overview. http://www.voltdb.com/_pdf/VoltDBOverview.pdf,
March 2010.

[27] J. T.-L. Wang, editor. Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008.
ACM, 2008.

29

http://www.voltdb.com/_pdf/VoltDBOverview.pdf

	main.pdf
	Introduction
	Related Work/Systems
	System Architecture
	OLTP Processing
	OLAP Snapshot Management
	Multiple OLAP Sessions
	Multi-Threaded OLTP Processing 

	Transaction Semantics and Recovery
	Snapshot Isolation of OLAP Query Sessions
	Transaction Consistent Archiving
	OLTP Transaction Synchronization
	Durability
	Atomicity
	Cleaning Action Consistent Snapshots
	Recovery after a System Failure

	Evaluation
	The TPC-C-Benchmark
	OLAP Query
	Performance of Different HyPer Configurations
	Hardware Configuration
	H-Store Setup without Redo-Logging

	Full TPC-C Transaction Suite
	Fork-ing a New Query Session


	Summary of the Innovation and Potential Impact


